SCN1A epilepsy: new treatments

Cleveland Clinic Genetics of Epilepsy Conference September 13th, 2020

Andrew Escayg, Ph.D. Dept. of Human Genetics Emory University

SCN1A mutations cause GEFS+ and Dravet

Genetic epilepsy with febrile seizure plus (GEFS+)	Dravet Syndrome
Inherited	De novo
 Febrile seizures >6 years Adult afebrile epilepsy Clinically variable within a family 	 Complex, prolonged febrile seizures Afebrile severe seizures Moderate-severe ID Ataxia 15-20% mortality
Amino acid substitutions	All types
Altered channel properties	Loss-of-function
Treatment responsive	Treatment resistant

Recent treatments for SCN1A-derived epilepsy

• Stiripentol

Myers et al., 2018, *Developmental Medicine and Child Neurology* Stiripentol efficacy and Safety in Dravet syndrome: a 12-year observational study

• Low dose fenfluramine

Lagae et al., 2019, *Lancet* Fenfluramine hydrochloride for the treatment of seizure in Dravet syndrome: a randomized, double-blind, placebo-controlled trial

Cannabidiol

Miller et al., 2020, *JAMA Neurology* Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome: A Randomized Clinical Trial

Exploring alternative treatments for SCN1A epilepsy

• Nanoparticle-encapsulated oxytocin

• Modulation of the cannabinoid 2 receptor (CB2R)

Escayg Laboratory

Escayg Laboratory Jennifer Wong, Ph.D. Lindsey Shapiro Kari Mattison Thomas Shiu

Samantha Reed Jordan Owyoung

George Inglis, Ph.D. Noor Badshah

Collaborators Kevin Murnane, Ph.D, Martin D'Souza, Ph.D. Clementina Manera, PhD

> **Funding** NIH-NINDS

Exploring the use of neuropeptides for the treatment for SCN1A epilepsy

Oxytocin (OT)

- Increases neuronal inhibition
- OTRs are expressed in discrete brain regions and circuits
- Pro-social behavior
- Neuroprotective and anti-inflammatory properties

Barriers to clinical use of neuropeptides

• Poor blood-brain-barrier penetrance

• Rapidly metabolized

Nanoparticle encapsulation of oxytocin

Oppong-Damoah et al., 2019, Horm. Behav.

• Nanoparticle encapsulation increases the brain penetrance and duration of action of intranasal oxytocin

Zaman et al., 2018, Int. J. Pharm.

• Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin

Rabies virus glycoprotein (RVG)-conjugated BSA nanoparticles

Kevin Murnane, Ph.D. Martin D'Souza, Ph.D.

NP-OT significantly increases and sustains resistance to 6 Hz-induced seizures in RH/+ mutants

- Nanoparticle encapsulation improves BBB penetrance
- Provides sustained release and seizure protection

N = 8/group

100 µg OT

Wong et al. Under review

NP-OT significantly increases resistance to PTZ-induced seizures

Mutant and WT mice were protected

100 µg OT

WT	Scn1a ^{RH/+}
Empty: $N = 8$	Empty: $N = 7$
NP-OT: <i>N</i> = 9	NP-OT: <i>N</i> = 10

Wong et al. Under review

NP-OT restores normal social behavior in RH/+ mutants

Wong et al. Under review

Repeated NP-OT administration does not elicit an inflammatory response

Wong et al. Under review

Modulation of CB2 cannabinoid receptors in SCN1A-derived epilepsy

The Endocannabinoid System (ECS)

- System in the brain on which marijuana acts
- Cannabidiol, an exogenous ligand, recently FDA approved but not always effective
- CB1R densely expressed on neurons
- CB1R activation accompanied by several psychotropic side effects
- CB2R predominantly on microglia
- CB2R expressed at low levels in neurons but highly inducible

CB2R knockout mice are more susceptible to PTZ-induced seizures

N= 8/group

Shapiro et al., 2019, Epilepsia

Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice

The CB2R agonist JWH-133 did not increase resistance to PTZ-induced seizures

Shapiro et al., 2019), Epilepsia

Ec21a: a CB2R positive allosteric modulator (PAM)

- Ec21a only has effect in the presence of orthosteric ligand
- More agonist binds in presence of Ec21a
- Agonist stays bound longer in presence of Ec21a

Gado, et al., 2019, J Med Chem (Clementina Manera)

Ec21a confers seizure resistance in CF1 WT mice

Ec21a - 10 mg/kg

N=9-12/group

Shapiro et al. Under review

Ec21a is seizure protective in Scn1a RH/+ mutant mice

6 Hz

PTZ

Shapiro et al. Under review

SUMMARY

- NP-OT provides robust and sustained protection against induced seizures
- Actively applying to other neuropeptides
- CB2R modulation confers seizure protection
- CB2R modulation might provide greater efficacy in chronic models